

IMPROVING DIAGNOSIS, REDUCING MISDIAGNOSIS – THE CASE OF THALASSAEMIA

Dr Androulla Eleftheriou

Executive Director, Thalassaemia International Federation President, Cyprus Alliance for Rare Disorders Member of the Board of Directors of the International Alliance for Patient Organizations (IAPO)

Thursday 23 May 2019 Universal Health Coverage: Including Rare Diseases to leave no-one behind Informal Side Event, 72nd World Health Assembly

Thalassaemia International Federation (TIF)

Established in 1986 as a

- Non-profit
- Non-governmental
- Patient/parent-driven

5 Founding Members from National Patient Associations of Cyprus, Italy, Greece, USA, UK – the first members

6 Medical Advisors forming the Scientific Advisory Panel

Supported by the World Health Organisation

Mission: Development and implementation of national <u>disease – specific</u> control programmes within national healthcare systems based on universal coverage

Vision: Equal and timely access to quality health, social and other care for all patients with thalassaemia globally, in a truly patient-centred healthcare setting

Transparency

Fthos

Values:

- Patient-centredness
- Strong patients' voice
- Health and social equity
- Accountability
- Independence

In 1986

Statements by TIF President, Mr Panos Englezos

1996: TO ACHIEVE ITS MISSION TIF IS FIGHTING FOR:
(i) POLITICAL RECOGNITION OF THE DISEASE BURDEN, NATIONAL/INTERNATIONAL LEVEL
(ii) POLITICAL COMMITMENT TO BUILD AND SUSTAIN NATIONAL CONTROL PROGRAMMES

 2003: TIF NEEDS TO ACHIEVE: (1) POLITICAL COMMITMENT AT THE NATIONAL, REGIONAL, INTERNATIONAL LEVEL
 INCREASE OF GOVERNMENT HEALTH EXPENDITURE
 PROVISION OF FULL COVERAGE/REIMBURSEMENT FOR CHRONIC DISEASES
 (2) NEED TO PRIORITISE Hb DISORDERS ON WHO'S PROGRAMMES:
 NON-COMMUNICABLE DISEASES (NCDs) (WHA61.14)
 BIRTH DEFECTS (WHA63.17)
 (3) NEED TO MONITOR IMPLEMENTATION OF WHO RESOLUTIONS:
 SPECIFIC: EB118.R1 (THALASSAEMIA) & WHA59.R20 (SICKLE CELL ANAEMIA)
 NON-SPECIFIC: WHA63.12 (AVAILABILITY, SAFETY, AND QUALITY OF BLOOD PRODUCTS); WHA63.18 (VIRAL HEPATITIS); WHA65.19 (COUNTERFEIT/SPURIOUS MEDICINES)

Thalassaemia International Federation (TIF)

227 National Patient Associations in **61** countries

216 Medical Advisors

63 Patient volunteers

Wide Network of Collaborators:

- 8 Medical, Scientific & Academic bodies, associations & societies
- 16 Patient NGOs at European & International levels
- 36 Industry organisations / companies

Working in official relations with the World Health Organization (WHO) since 1996

In special consultative status with the United Nations Economic and Social Council (ECOSOC) since 2017

ECOSOC

Official Partners of the European Commission in the field of Health since 2018

Thalassaemia: A polyorganic disease

Thalassaemia is no longer a fatal disease of childhood, but this is not the case globally.

Medical /public health impact

Pathophysiology of β-thalassemia

 18

1960s

Cyprus,

Haemoglobinopathy Subgroups

Consequences of Un-diagnosis / Misdiagnosis / Late Diagnosis

¹Pippard M et al. Lancet 1979;2:819–821; ²Pootrakul P et al. Birth Defects Orig Artic Ser 1988;23(5B):3–8
 ³Taher AT et al. Am J Hematol 2010;85:288–290; ⁴Origa R et al. Haematologica. 2007;92:583–588;
 ⁵Musallam KM et al. Haematologica 2011;96:1605–1612

Pioneer success stories of the Southern Mediterranean Example: Cyprus

National Control Programme - Cyprus (1974 - 2015) 70 60 Number of 50 **Actual Births** VS 40 Expected Births, 30 Cyprus (1974 - 2015) 20 10 Cyprus Population Screening Laboratory - 2019 Expected Actual Age Distribution of Thalassaemia Patient survival in Cyprus according to birth cohort Patients in Cyprus Survival Fuctions Birth Cohort IIII 1980-1980- censored 1975-9 1975-9 censored No. of Patients 1970-5 1970-5 censored 1965-9 llthltmate days 1965-9 censored 10 20 30 Years Telfer P et al Haematologica - 2006 Cyprus Thalassaemia Centre Registry - 2016 THALASSAEMIA **INTERNATIONAL**

Cyprus, Italy, Greece: The first countries to develop diseasespecific policies within their national healthcare system

Later followed by the **UK and France**

Pioneer success stories of the Southern Mediterranean Example: Greece

Fig. 1 Distribution of registered cases in the NRHG according to age groups. The peak of patient distribution corresponds to the age group of 36–45 years regarding TM, 46–55 years among TI, and 41–50 years

among SCD patients. TM thalassemia major, TI thalassemia intermedia, HH hemoglobinopathy "H", SCA sickle cell anemia, S/ β -thal double heterozygous HbS and β -thal

Source: Voskaridou E et al, 2018

Before & After inclusion in the NHS – the example of the UK

2003: Community awareness, diagnosis & Standards of Care are integrated in the NHS

Successful National Control Programmes: Middle East

(consequent to inclusion of control programmes in national HC system)

M. Hadipour Dehshal et al.			Hemoglobin, Early Onl
Step 1	Step 2	Step 3	Step 4
1. A couple decides to marry			
The couple decides to register their intent to marry at the notary office			
3. The couple undergoes compulsory thalassemia screening			
4. The male candidate is the first to undergo screening ^a	MCH >27.0 pg or MCV <80.0 fL	The couple are officially allowed to get married	
5. MCH >27.0 pg or MCV <80.0 fL			If indices are normal and Hb $\rm A_2$ <3.5%
6. The female undergoes CBC testing	MCH >27.0 pg or MCV <80.0 fL		
7. MCH >27.0 pg or MCV <80.0 fL			
8. Hb A ₂ level in both male and female is evaluated	If Hb $\rm A_2$ is <3.5% in either male or female		Treatment for iron deficience anemia and reevaluation of Hb A and indices after 1 month
9. If Hb A ₂ level is between 3.5 and 7.0% in both male and female, the next step should be taken			If indices are normal but Hb A ₂ still is <3.5% in either male or female
10. The carrier couple are offered counseling by genetic advisors		If indices are abnormal but still is Hb A ₂ <3.5% in either male or female	

Figure 1. The process by which the National Thalassaemia Prevention Programme is implemented in Iran. (a) Thalassemia screening starts with the male to avoid stigmatization of the woman in a male-dominated society. MCV: mean corpuscular volume: MCH: mean corpuscular Hb.

Lebanon – Declining new births (1988 – 2011)

Successful National Control Programmes: West Pacific

THALASSAEMIA

NTERNATIONAL

Diagnostic challenges

- 3. Lack of integrated disease-specific policies within UHC healthcare system, leading to undiagnosed / misdiagnosed cases with thalassaemia left out
- 4. High % of comorbidities leading to disabilities, and low quality of life for patients

Considering that thalassaemia is both PREVENTABLE and TREATABLE, this situation is UNACCEPTABLE and a violation of basic HUMAN and PATIENTS RIGHTS with costs to patient family, society, public health, economic development

Burden of Disease vs Prioritisation on Health Agendas

Global Burden of Disease across all ages			Deaths/year			
Sickle Cell Disease	1990	74 th	17 th (age group: 1- 4 years)	28, 640 (16756- 40,869)		
	2010	70 th				
Thalassaemias	1990	65 th	24 th (age group: 1- 4 years)	17,860 (15071-20430)		
	2010	68 th				
2013/2016/ heterogeneity Burden unidentified						

GLOBAL REGIONAL & COUNTRY STATUS: Components of Management of Hb Disorders - as per TIP's 2nd Guidelines Revised Edition - 2008 & Patients' Support

But... still largely neglected disorders

The vast majority of patients with haemoglobinopathies live in **low- and middle**income countries, where prevention and management programmes are usually lacking

eg ~79% of sickle cell anaemia births occurred in Sub-Saharan Africa in 2010¹

The **life expectancy** of patients with haemoglobinopathies is still considerably lower than that of normal individuals

 eg the life expectancy of patients with SCD is still shortened by >2 decades compared with the general population²

Drugs for patients with haemoglobinopathies are limited • eg FDA only just approved the second drug to treat SCD since HU in 1970s³

2017

Current Status of Prevention and Clinical Management for Thalassaemia globally

THANK YOU FOR YOUR ATTENTION

